نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

دانشگاه شیراز

10.22047/ijee.2021.209626.1741

چکیده

 محیط مطالعه نقش بزرگی در رضایت و بهره‌وری دانشجویان دارد. تاکنون مطالعات زیادی برای شناسایی عوامل مؤثر انجام شده است امّا تأثیر هر عامل بر دانشجویان کامپیوتر بررسی نشده است. آزمایشگاه‌های تحقیقاتی تأثیر زیادی بر دانشجویان کامپیوتر دارند چون کار گروهی در پژوهش آن‌ها حیاتی است. در این مقاله به دانشجویان گرایش‌های مختلف تحصیلات تکمیلی کامپیوتر، در یکی از دانشگاه‌های شیراز پرداخته شده است و از مطالعه ترکیبی (مصاحبه و پرسش‌نامه) و چندمرحله‌ای (دو مصاحبه برای شناسایی عوامل مؤثر و یک پرسش‌نامه) استفاده شده است. با 14 نفر از دانشجویان کامپیوتر مصاحبه شد. مهم‌ترین عوامل محیطی به‌ترتیب: در دسترس‌بودن استاد، توانایی برقراری ارتباط با سایر دانشجویان، صداهای مزاحم، وجود قوانین و هنجارهای اجتماعی، نظافت، منظره و نور بودند. سپس براساس عوامل حاصل از مصاحبه و کارهای پیشین، پرسش‌نامه‌ای با ضریب آلفا-کرونباخ %85 طراحی گردید. از 175 دانشجو که پرسش‌نامه به آنها داده شده بود 73 پاسخ دریافت شد. پاسخ‌نامه‌ها در دو سطح آمار توصیفی و مدل‌های آماری تحلیل شدند. مدل بهره‌وری، نور، رضایت از ارتباط با استاد، سطح رضایت کلی، وجود قوانین و هنجارهای‌اجتماعی از مهم‌ترین عوامل بودند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

EFFECTS OF PHYSICAL ENVIRONMENTS ON PRODUCTIVITY AND SATISFACTION OF COMPUTER GRADUATE STUDENTS

نویسندگان [English]

  • Shima Esfandiari
  • Mohammad Reza Moosavi
  • Ashkan Sami

Shiraz university

چکیده [English]

- The research environment plays a major role in students’ satisfaction and productivity. So far, many studies have tried to identify factors that affect student satisfaction and productivity, but they have not addressed the most important environmental factors. In this paper, we explored different environmental factors of computer students at one of the Shiraz University labs. For this purpose, we used mixed methods of multiple stage research design. At first 14 students were interviewed in various computer majors. As a result, the most important environmental factors were the ability to communicate with supervisors and other students, noises, social norms and signals, cleanliness, view, and light. A survey was designed based on interviews and previous work factors with alpha Cronbach 85%. Then, the survey was sent to 175 students and received 73 responses. Survey’s data analyzed at two levels of descriptive statistics and statistical models. Statistical models were built for satisfaction with the work environment and perceived productivity. In the satisfaction model, a specific place in the lab and the ability to communicate with the supervisor were important factors among others. In productivity models light, communicating with supervisor, overall satisfaction, and social norms were important factors.

کلیدواژه‌ها [English]

  • Productivity
  • Satisfaction
  • Physical environments
  • Graduate students
  • Research environments
References
Al Ghamdi, A., Samarji, A., & Watt, A. (2016). Essential considerations in distance education in KSA: Teacher immediacy in a virtual teaching and learning environment. International Journal of Information and Education Technology, 6(1), 17.
Allen, T. J. (1984). Managing the flow of technology: Technology transfer and the dissemination of technological information within the R&D organization. MIT Press Books, 1.
Barnes, B. J., & Randall, J. (2012). Doctoral student satisfaction: An examination of disciplinary, enrollment, and institutional differences. Research in Higher Education, 53(1), 47–75.
Baron, R. A. (1994). The physical environment of work settings: Effects on task performance, interpersonal relations, and job satisfaction. Research in Organizational Behavior, 16, 1.
Congdon, C., Flynn, D., & Redman, M. (2014). Balancing” we” and” me”. Harvard Business Review, 92(10), 50–57.
Danielsson, C. B., & Bodin, L. (2009). Difference in satisfaction with office environment among employees in different office types. Journal of Architectural and Planning Research, 241–257.
DeRango, K., Amick, B., Robertson, M., Rooney, T., Moore, A., & Bazzani, L. (2003). The productivity consequences of two ergonomic interventions.
Dericks, G., Thompson, E., Roberts, M., & Phua, F. (2019a). Determinants of PhD student satisfaction: the roles of supervisor, department, and peer qualities. Assessment & evaluation in higher education, 44(7), 1053–1068.
Dericks, G., Thompson, E., Roberts, M., Phua, F., Dericks, G., Thompson, E., Roberts, M., & Phua, F. (2019b). Assessment & Evaluation in Higher Education Determinants of PhD student satisfaction : the roles of supervisor , department , and peer qualities determinants of Ph.D student satisfaction : The roles of supervisor , department , and peer qualities. Assessment & Evaluation in Higher Education, 44(7), 1046–1061. https://doi.org/10.1080/02602938.2019.1570484
Devanbu, P., Karstu, S., Melo, W., & Thomas, W. (1996). Analytical and empirical evaluation of software reuse metrics. Proceedings of IEEE 18th International Conference on Software Engineering, 189–199.
Feldman, D. C. (1984). The development and enforcement of group norms. Academy of Management Review, 9(1), 47–53.
Froiland, J. M., Worrell, F. C., & Oh, H. (2019). Teacher–student relationships, psychological need satisfaction, and happiness among diverse students. Psychology in the Schools, 56(5), 856–870.
Graziotin, D., Fagerholm, F., Wang, X., & Abrahamsson, P. (2017). On the unhappiness of software developers. Proceedings of the 21st International Conference on Evaluation and Assessment in Software Engineering, 324–333.
Graziotin, D., Wang, X., & Abrahamsson, P. (2015). Do feelings matter? On the correlation of affects and the self-assessed productivity in software engineering. Journal of Software: Evolution and Process, 27(7), 467–487.
Graziotin, D., Wang, X., & Abrahamsson, P. (2013). Are happy developers more productive? International Conference on Product Focused Software Process Improvement, 50–64.
Guest, G., Bunce, A., & Johnson, L. (2006). How many interviews are enough? An experiment with data saturation and variability. Field Methods, 18(1), 59–82.
Haynes, B. P. (2007). Office productivity: a theoretical framework. Journal of Corporate Real Estate.
Jazayeri, M. (2004). The education of a software engineer. Proceedings. 19th International Conference on Automated Software Engineering, 2004., xviii–xxvii.
Johnson, B., Zimmermann, T., & Bird, C. (2019). The Effect of Work Environments on Productivity and Satisfaction of Software Engineers. IEEE Transactions on Software Engineering.
Judge, T. A., Thoresen, C. J., Bono, J. E., & Patton, G. K. (2001). The job satisfaction–job performance relationship: A qualitative and quantitative review. Psychological Bulletin, 127(3), 376.
Kan, S. H. (2002). Metrics and models in software quality engineering. Addison-Wesley Longman Publishing Co., Inc.
Kelly, A. (2014). The prototype of future knowledge workers. Apr.
Kersten, M., & Murphy, G. C. (2006). Using task context to improve programmer productivity. Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering, 1–11.
Kuh, G. D., Kinzie, J. L., Buckley, J. A., Bridges, B. K., & Hayek, J. C. (2006). What matters to student success: A review of the literature (Vol. 8). National Postsecondary Education Cooperative Washington, DC.
Leaman, A., & Bordass, B. (2006). Productivity in buildings: the ‘killer’variables. In Creating the productive workplace (pp. 181–208). Taylor & Francis.
Lee, A. (2008). How are doctoral students supervised? Concepts of doctoral research supervision. Studies in Higher Education, 33(3), 267–281.
Locke, E. A. (1976). The nature and causes of job satisfaction. Handbook of Industrial and Organizational Psychology.
McIntosh, S., Kamei, Y., Adams, B., & Hassan, A. E. (2014). The impact of code review coverage and code review participation on software quality: A case study of the qt, vtk, and itk projects. Proceedings of the 11th Working Conference on Mining Software Repositories, 192–201.
Meyer, A. N., Fritz, T., Murphy, G. C., & Zimmermann, T. (2014). Software developers’ perceptions of productivity. Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, 19–29.
Miles, A. K. (2000). The ergonomics and organizational stress relationship. Florida State University.
Nielsen., C. (2016). How microsoft used an office move to boost collaboration. Harvard Business Review.
O’Neill, M. J. (1994). Work space adjustability, storage, and enclosure as predictors of employee reactions and performance. Environment and Behavior, 26(4), 504–526.
Obuku, E. A., Lavis, J. N., Kinengyere, A., Ssenono, R., Ocan, M., Mafigiri, D. K., Ssengooba, F., Karamagi, C., & Sewankambo, N. K. (2018). A systematic review on academic research productivity of postgraduate students in low-and middle-income countries. Health Research Policy and Systems, 16(1), 86.
Oldham, G. R. (1988). Effects of changes in workspace partitions and spatial density on employee reactions: A quasi-experiment. Journal of Applied Psychology, 73(2), 253.
Oldham, G. R., & Brass, D. J. (1979). Employee reactions to an open-plan office: A naturally occurring quasi-experiment. Administrative Science Quarterly, 267–284.
Pascarella, E. T., & Terenzini, P. T. (2005). How college affects students: A third decade of research. Volume 2. ERIC.
Petersen, K. (2011). Measuring and predicting software productivity: A systematic map and review. Information and Software Technology, 53(4), 317–343.
Pike, G. R. (1993). The relationship between perceived learning and satisfaction with college: An alternative view. Research in Higher Education, 34(1), 23–40.
Romano, S., Scanniello, G., Fucci, D., Juristo, N., & Turhan, B. (2018). The effect of noise on software engineers’ performance. Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, 1–10.
S. E. Staff. (2002). Workers’ physical environment impact bottom line.
Solinas, G., Masia, M. D., Maida, G., & Muresu, E. (2012). What really affects student satisfaction? An assessment of quality through a university-wide student survey. Creative Education, 3(1), 37–40.
Spencer, D. (2009). Card sorting: Designing usable categories. Rosenfeld Media.
Stokols, D., & Scharf, T. (1990). Developing standardized tools for assessing employees’ ratings of facility performance. In Performance of buildings and serviceability of facilities. ASTM International.
Sudhakar, G., Farooq, A., & Patnaik, S. (2012). Measuring productivity of software development teams. Serbian Journal of Management, 7(1), 65–75.
Umbach, P. D., & Porter, S. R. (2002). How do academic departments impact student satisfaction? Understanding the contextual effects of departments. Research in Higher Education, 43(2), 209–234.
Waltz, C. F., & Bausell, B. R. (1981). Nursing research: design statistics and computer analysis. Davis FA.
Zhou, M., & Mockus, A. (2010). Developer fluency: Achieving true mastery in software projects. Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations of Software Engineering, 137–146.