کاربرد خلاقيت بیونیک در مهندسی

علیرضا منصوریان
دانشگاه صنعتی مالک اشتر، مرکز تحقیقات خلاقیت و نوآوری صنعتی

چکیده: خلاقيت و نوآوری یکی از عناصر اصلی در پژوهش‌ها و تحقیقات همه علم عام است. یکی از جنبه‌های خلاقيت شناسی کاربردی، تأویل بیونیکی است که با استفاده از اصول تکاملی طبیعت راهکارهای مدرن و تازه‌ای به پژوهشگران ارائه می‌کند. بطور کلی، فرایند الگوگیری از طبیعت را برای خلق ایده‌ها و نوآوری‌های جدید بیونیکی گویند. مهندسی بیونیک علوم مطالعه مدل‌های طبیعت و الگوها گیری از این طرح‌ها و فرایندها برای رفع مشکلات مهندسی است و عده‌ای نیز بیونیک را هنر به کار گرفتن دانش سیستم‌های زنده برای حل مسائل تکنیکی می‌دانند. تاکنون با استفاده از علم بیونیک پیشرفتهایی برگزیده در علوم فیزیک و مهندسی ایجاد شده و پژوهش‌هایی نیز در این زمینه در حال انجام شدن است که می‌توان الگوگیری‌های منتو در علوم پزشکی، مانند قلب‌های کاملاً مصنوعی و علوم مهندسی، الگوگیری از اسپیکولهای بین تاپی نوعی اسناف یا برای ابداع فیبرهای (Rosella) ایمنیکی و نیز انواع دیگر ناهایی راکه توسط زمان‌های مختلف از جمله ناسا برای کارهای اکتشافی، تحقیقاتی و جاسوسی ساخته می‌شود نام برده.

واژه‌های کلیدی: بیونیک، خلاقيت و علوم مهندسی.

1. Total Artificial Heart
1. مقدمه

فرایندهای خلاقیت و نوآوری در رشد و توسعه علوم پایه به ویژه علوم فنی و مهندسی با تکنولوژی مدرن و پیشرفت نهایی ممکن است. یکی از موانع اصلی پیشرفت علوم فنی و مهندسی نبود خلاقیت و نوآوری است که این موضوع محور اصلی پژوهش‌ها و تحقیقات باشماری می‌رود. با استفاده از دانش خلاقیت شناسی و مفاهیم راهگاهی علمی کاربردی آن آینده‌ای بهتر برای پیشرفت علوم فنی و مهندسی کشور می‌توان انتظار داشت. یکی از جنبه‌های خلاقیت شناسی کاربردی فناوری بیونیکی است که در آن با استفاده از اصول تکاملی طبیعت، مشکلات و معایدات ایجاد شده در سر راه پژوهش‌های علوم فنی و مهندسی بهصورت خلاقانه حل می‌شود.

برای بیونیک تعريف‌های متعدد وجود دارد. به طور کلی، فرایند الهام والگوگری از طبیعت را برای خلق ایده‌ها و نوآوری‌های جدید بیونیک گویند. بیونیک تکنیکی نسبتاً جدید است که به مهندسشنزی برای حل مشکلات تکنیکی کمک می‌کند. بیونیک و زمینه‌های مرتبی با آن به مهندس پایه دهده که چگونه طبیعت سیستم‌ها را طراحی کند و از منابع بیماری خوبی برای الگوگری در اختیار مهندسی قرار می‌دهد که موجب ترقی و پیشرفت در پژوهش‌های علوم فنی - مهندسی می‌شود.[5]

ورنر ویلنسکی، رئیس گروه بیونیک در آلمان، می‌گوید: «علم بیونیک از قوانین تکاملی طبیعت که میلیون‌ها سال قبل بدون سرمایه‌ای توقف، را دقت خاص یک ساعت اطمن پیاده شده‌اند.» طبیعت می‌کند و به عنوان دانش‌نامه‌ای منبع الهام‌گیری محصور می‌شود و از آن تقلید می‌کند.[2]

هدف از این علم تولید ماذکرین و مواد پیچیده‌تر با الگوگری از طبیعت است. طبیعت بدون ایجاد آلودگی محصولاتی تولید می‌کند که از نظر کاربردی بهتر از تولیدات دستساز بشر عمل می‌کند. به عنوان مثال، در مقداس بارا، استخوان‌های باریک و عضایت از فولاد محکم‌تر هستند. دلیل این مهم چیست؟ یکی از پاسخ‌ها این است که فرم مهندسی بسیار عالی این تركب‌های برگردید و حتی دانش‌بانان با نگاهی دقیق تر به کوچک‌ترین اجزای طبیعت موادی را از آن جدا می‌کنند و به عنوان نمونه‌های خاصی که و برخی از نظر سبکی و دوام به آنها حساب می‌شود.
در این راستا علم مهندسی بیونیک به عنوان یک پل بین رشته‌ای با مطالعه و الگوگیری بهتر و دقیق تر طبیعت بر محدودیت‌ها و مسائل تکنولوژی‌ای غله و راه‌کارهایی مناسب و مناسب با شرایط زندگی در طبیعت ارائه می‌کند [۲۳].

۲. تاریخچه

اولین کسی که نخستین بار وازه بیونیک را به کار برده، سرگردم جک آی. استیل (۱۹۵۸) در Dayton Ohio در Patterson-Wright همایش نیروی هوایی طبیعت الگوگیری کرد است. لنواردو داوینچی (۱۵۱۹-۱۶۰۳) تحقیقی از یک ماسیون پرنده بر اساس ساختاری بدن یک خفاش رسم کرده شاپید بتوان او را به عنوان اولین مهندس الگوگیرنده از طبیعت معرفی کرد [۲۴].

کلمات آماده چهارصد سال بعد (۱۹۹۰) ماسیون پرنده‌ای با یک طرح تهیه کرد. بعد از آن نیز در خلق اولین هوایی‌های موتور سبک، دانشمندان از دانه‌های بازدازگان که به وسیله یادگیری انقلاب داده می‌شوند، کمی برداری کردند [۴].

همایش Busnel یکی از اولین همایش‌های است که در آن مشکلات و مسائل مهندسی توسط زیست‌شناسان، مهندسان و ریاضیدانان مورد بحث قرار گرفت. این همایش بین‌المللی کنگره بیونیک در سال ۱۹۶۰ و دو میلیون کنگره در سال ۱۹۶۲ در آنتی‌بیونیک داده موضوع مورد بحث آن سیستم‌های طبیعی و مصنوعی و بیونیک بود. آگارد لار و دیگر در سال ۱۹۶۵ مورد بحث عمومی در باره بیونیک ترتیب داد که او در پاریس و دو میلیون نسخه در دوسلدورف آلمان بود [۱].

همچنین، سمپوزیوم بیونیک در سال ۱۹۶۲ در یکپاکه نیروی هوایی رایت باترسن تکنیک شد. وازه بیومیکسی در سال ۱۹۹۱ توسط مرکز تحقیقات ویژه نیروی هوایی انگلیس برای الگوگیری و الگوگیری از طبیعت ارائه شد. در حال حاضر نیز سیستم‌ها و کنترل‌های متعددی در این زمینه برگزار می‌شود و مراکز متعادلی در دنیا به روز این علم مشغول به فعالیت هستند که از آنها می‌توان به مراکز بیونیک در دانشگاه BATH و بیومیکس در انگلستان، مرکز تحقیقاتی بیومیکس در ناسا، کمپانی BPI که بر روی READING دانشگاه را بی‌تفاوت نشان می‌دهد.
توسعه تولیدات و تحقیقات بیونیکی کار می‌کند و... اشاره کرد.

3. بیونیک چیست؟ طبعیت الگوی برای تکنولوژی و پیشرفته پژوهش‌های مهندسی

مهندسی بیونیک، یک راه و یا گذاری یا الگوگیری نوآورانه از طبیعت است. این علم یک اصل جریان در مشورت کردن و رقابت با استراتژی‌ها و طرح‌های آزمایش شده طبیعت جستجو می‌کند. با این ایجاد که طبیعت قوی تصور را افزایش می‌دهد، سیاست از مشکلات که انسان‌ها با آن گل‌زار هستند، حل می‌شود. استفاده از اصول طبیعت به انسان خصوصاً مهندسان اجازه می‌دهد که تولیدات، فرایندها و سیاست‌های خلق کنند که برای زندگی در زمین بهینه شده‌اند.[2]

این ایجاد که سیستم‌های طبیعی ممکن است ابزارهای طراحی مناسب باشند که بتوان در تکنولوژی سازندگی از آنها استفاده کرد، جدید نیست. برای از اختراعات اولیه بر پایه مطالعه مکانیسم‌های طبیعی بود و نمونه‌های موثری می‌تواند نیز در تکنولوژی امروزی از آنها وجود دارد. از مهندسی بیونیک بطور اکثریت برای خلق راه‌حل‌های نوآورانه و متناوب برای حل مشکلات در طراحی و ساخت و تولید استفاده شده است. ساختارهای اولیه این راه حل‌ها در طبیعت وجود دارد که آنها در هر دو مقطع مبکر و ماکرو انجام شده است.[5]

بنابراین، مواد جدید با استفاده از مواد مشابه قدری خود در طبیعت طراحی شده‌اند و از فلسفه مهندسی بیونیک در جهت طراحی و تکمیل ساختارهای موادی که قبلًا وجود داشتند، استفاده شده است. مهندسی بیونیک یک منبع اولیه برای تقویت و نیز تکنیکی خلاق است که می‌تواند ابزار مؤثر برای طراحی کننده‌ها و مهندسان باشد. مهندسی بیونیک نتیجه تکنولوژی عملکرد اثبات یا دزدیدن ایده‌ها از طبیعت است. میلیون‌ها سال است که ساختار جانداران توسعه پیدا کرده است و از نظر اقتصادی بهترین حال را دارند. منطقی به‌نظر می‌رسد که مهندسی با طرح سوالاتی درباره مواد، ساختارها و حتی مکانیسم‌های طبیعت را برای شرح بعضی پاسخ‌های کارآمد از انرژی برای مشکلات مشابه ایجاد شده به‌وسیله تکنولوژی مورد تحقیق قرار دهد. سازگاری تکاملی حیوانات برای تقویت پرواز و شناکدن
مشابه وظیفه‌ای است که مهندسان کشتی، هوایی و ماهی‌های دارند که وظیفه آن انتقال اجسام با کمترین قیمت و تضمين قابلیت مانور بهینه در حذر یک تغییر مکان قابلیت هاست. بر خلاف مهندسی‌های آزمایشگاهی زیرگک دارد. بیش از میلیون‌ها سال تعداد زیادی از طریق آزمایش و بهینه‌شدن [7].

مهندسی بیونیک قصد دارد ابزارهای ایجاد شده توسط طبیعت جاندار را کشف و از آن در توسعه راه‌های نوآوری برای مهندسی مدرن استفاده کند. این مهندسی و طبیعت ارتباطی وجود دارد که بر یک کمترین استفاده از انرژی این و آن هم به این دلیل است که حیوانات و گیاهان برای زندگی ماندن با یکدیگر در حال رقابت هستند. کارآیی‌های پیچیده‌ای در متابولیسم و تقویم بهینه انرژی بین عملکرد دهای متنوع حیات وجود دارد که از آنها راه حل‌های مشابهی برای مهندسی به فردی می‌آید که در توانده کارایی انرژی و ساخت و ساز را در تمام سطوح مهندسی بهبود بخشید.

مهندسی بیونیک زمینه مهندسی چندمنظوره است که در زمینه‌های متنوع استفاده می‌شود. عبارت اند از: الکترونیک، مکانیک، صنایع و فناوری اطلاعات که تکنولوژی‌های انسانی را گسترش می‌دهد. فراوان و سیاه از تکثیر از مواد طبیعی به دست می‌آید که عبارت اند از: کاربردهای جدید مواد، بهبود عملکرد، کاهش هزینه‌های سازندگی و کاهش آلودگی. به علاوه، مهندسی زیستی رنگارنگ و بهبود عملکرد از موارد با استفاده از اصول طراحی طبیعت به دست می‌آورند. بنابراین، مهندسی بیونیک هنوز به اکتشافات واقعی، نوآوری و خلاقیت نیاز دارد و با چهار طبیعت برای الهام‌گیری و درک فرصت‌ها تحقیق‌ها شود [2].

اصول از اصول تکاملی طبیعت به عنوان یک فرانک بهینه‌سازی و الهام‌گیری از آن برای راه حل‌های تکنیکی نوآورانه علوم مهندسی یکی از معیارهای بیونیکی است که محقق گردیده‌ام از طراحی فعالیت‌های تحلیلی زیست شناسان و تلاقی‌های سازندگی مهندسی است [7].

به‌نظر می‌رسد که این حاصل نمونه‌ای از تجربیات به روش‌های علوم و فنون مهندسی است. وظیفه این علم بررسی فراپرا و ساختارهای بیولوژیکی را برای طراحی های مهندسی آینده است که موجب پیشرفت تکنولوژی و علوم فیزیک مهندسی و هماهنگی بیشتر آن با محیط‌های محیط می‌شود. سرانجام، بیونیک راه جدیدی است که مهندسی به وسیله محدودیت‌های زمین و پر‌شتاب مرزبانی نمی‌شوند [6].
4. کاربردهای بیونیک در پیشرفت علوم فنی و مهندسی

در علوم فنی و مهندسی مدرن گرگری زیادی از طبیعت شده است که از آنها می‌توان به این موارد اشاره کرد.

پاننتو اتمی بیشتری ربات های مکانیکی که اوزان آن آماده‌اند، از طبیعت الگوهای طبیعت استفاده شده است. معمولاً ساختن و ساختارهای قابل انسجام که در صنایع کاربرد زیادی دارند از شکل تارهای عنکبوت و نیز زیبردیپایی از ساختن پوست دولفين گرفته شده است; همچنین، از پوست دولفين برای ساخت روبات‌های جدیدی که در صنایع هوایی بسیار استفاده می‌شوند استفاده می‌شود. ساخت و پیشرفت سرامیک‌ها با گرگری آزمایشگاهی، و ساخت Bioreactors و تصفیه کننده‌های آب از چگونگی تصمیم‌گیری در طبیعت، طراحی و ساخت Crystal Palace و ساخت Dandelion چتر از روزی دانه‌های گیاه برگه یک زنبق آبی یخ‌برگه، همه و همه الهمانی است که طبیعت به مهندسندان چالش می‌دهد و موجب پیشرفت علوم و فنون مهندسی شده است.

طرح سامار افرآ (میوه فندق بالدار) در طراحی جدید به‌علاوه نوعی هیلی و کوتیر به کار رفته است. اولین هوایپنی با موتوور سبک را که بکه‌سازی از دانه‌های باز دانگان ساختن می‌کند که به وسیله باد حیرت می‌کند. تسویه رادار از مطالعه اصول انعکاس صدا خفافی به دست آمده است.

زیست شناسان و مهندسان نتایجی دانشگاه برکلی کالیفرنیا در چهار سال گذشته مشغول به گ.Specialized flying insect یا گروه‌های کوچک با هزودی مانند گگرک به پرواز به‌حال آماده آماده آماده آماده قرار دارند. آزمایش تحقیقاتی پیشرفت دفاعی پتنت‌گون علائم بر سرماهی گذاری در بخش عضوی این پروتزه‌ها به نظر شدید آنها می‌پردازد و تا دستاوردیده‌ای این گونه تحقیقات در برنامه‌های گست‌زنی و شناسایی مورد نظر خود استفاده کنند.
یکی از نخستین مدل‌ها که آن را دکتر هارمون در آزمایشگاه تلفن بی‌سانت، شامل ترانزیستور، 10 مقاومت و 2 خازن است. سیگنال هایی که در آن به‌وجود می‌آید بسیار شبیه سیگنال‌های نرونهای هستند که از آن می‌توان شبکه پیچیده‌ای ساخت که قادر است عملیات جبری یا منطقی انجام دهد. خمیده‌گی کشی‌ها و کانال‌هایی که برای کاهش مقاومت دارند، با مطالعه الگویی و الگویی از واقعیت (نهنگی) انجام شده است. علم الکترونیک و سیستم‌های هوشمند الهم‌اکنونی از سلول و نرونهای عصبی گرفته‌اند که می‌توان کامپیوترهای DNA را مثل زد [۶].

مواد زیادی نیز وجود دارد که مهندسان در حال کارکردان بر روی آنها هستند که از آنها به‌جای مورد اشاره می‌شود. الگوگیری از مار زنبور یک ساختار شیمیایی که با آشکارگر گرما‌پذیری مشابه را به‌سوی هدف خود می‌رود، رشته‌های شیبی‌کننده و متابولیت‌ها استفاده می‌کند. کاربرد آن در جهت افزایش دوا دستی‌کننده استفاده می‌شود و از تجزیه شیمیایی که در دولفين‌ها و ماها انجام داده‌اند می‌خواهد برای تشخیص و پیش‌بینی گیشه‌های در دوبای (رطوبت‌هایی که گوشی‌ها) استفاده کند [۶] یک شیبی‌کننده عصبی بیولوژیکی برای مدل بیک حسگر شیب‌های با الگوگیری دوقلویان برای تشخیص هدف‌ها ساخته شده است. محققان از یک رشته انجعاس‌های شبیه در حین آزمایش‌های دولفین استفاده می‌کنند. الگوگیری از تبعیض انعکاس‌های شبیه در آب برای مهندسان الگوی زیادی دارد [۶].

در حین جنگ جهانی دوم، دو طوری از تلف‌های آبی برای تشخیص و ردیابی زیردریایی استفاده می‌کرده‌اند. از تلف‌های آبی فقط وقتی می‌توان استفاده کرده که کشتی متوقف شده باشد یا با سرعت خیلی کم حرکت کند، در غیراین صورت، صداهای تولید شده با وسیله جریان آب عملکرد این تلف‌ها را مختل می‌کند. مهندسی که بر روی به‌ورز این نقص کار می‌کند، متوجه شده که در دو میزان درک و شنیدن سکه‌ها در بی‌زیستی حرکت سریع هیچ اخلاقی ایجاد نمی‌شود. این مهندس پیشنهاد کرد که تلف‌های آبی را مشاهده شکل حفره‌گوش سگ در بی‌زیستی کنند تا عملکرد آن به‌طور یادبود در نتیجه، تلف‌های آبی در حین حرکت کشتی‌ها عملکرد بهتری داشتند [۵].
همچنین، در استفاده از وسیله‌های نقلیه خودکار برای مطالعات اقیانوس‌شناسی، مراقبت‌های نظامی و ماموریت‌های تحقیقاتی تمامی ایجاب‌های شده است. مهندسان در انجمن تکنولوژی دانشگاه ماساچوست تلاش می‌کند رباتیک راک از شناور ماهی تلقیه‌کننده‌ای و ترازی کند [۲].

با استفاده از لیزر در مطالعات جریان‌های اطراف ماهی‌ها مشخص شده که وقتی یک جسم مانند کشتی در آب به سمت جلو حرکت کند، گرداب‌ها و حالت‌های چرخشی در آب ایجاد می‌شود که در دنیای کشتی پدیدار و موجب سکین شدن انتهای کشتی، اتلاف انرژی و کاهش نیروی دافع می‌شود که احساس قطعه زیرهای شده می‌تواند این سکینی را کاهش دهد. این راه را می‌توان از سازگاری طبیعی ماهی‌ها بیان کرد که چگونه این نوسان‌ها و گرداب‌ها راک از کند. آنها همچنین، در ریاضیده که وقتی ماهی‌ها با C به خود می‌گیرند، می‌تواند گرداب‌ها را به سرعت کنترل کند [۳].

۵. بحث و نتیجه‌گیری

در قدمی هیچ‌گونه نقص‌های نماسی بین علوم مهندسی با علوم زیست‌شناسی وجود نداشت. اما امروره می‌بینیم که مواردی در واقع، نوع ویژگی‌های مشابه‌های ماهی‌ها هستند و مکانیسم‌های معین و پیچیده‌ای در آنها به کار رفته است.

خلاصه‌ی بیونیک در طی سه مرحله مشکلات و مسائل مهندسی را مورد بررسی قرار می‌دهد:

۱. بررسی مسئله؛ عناصر و نیازهای اساسی برای حل کردن آن؛
۲. بررسی نمونه‌هایی از طبیعت برای حل مسئله؛
۳. تبدیل راه حل طبیعت به راه حل انسانی یا مهندسی در جهت تبیین مسئله.

به همین دلیل، برای حل مسائل صنایع و مهندسی باید با گردش‌های زیست‌شناسان و مهندسان در کانون یک علم رابط پژوهش‌های گسترده‌ای در هر سه زمینه ذکر شده انجام شود و هر گرده و مهندسی و محققان نسبت به گرایش عملکردی در هر یک از این زمینه‌ها تلاش

۱. Autonomous Undersea Vehicles
کدنه. البته، برای اینکه از این علم بهتر استفاده شود، لازم است تا تحقیقات بیشتری در این زمینه انجام شود. همچنین، آزمون اصول تکنولوژی مبنا بر طبیعت (NOTE) (بايد مورد توجه مهندسان و محققان قرار بگیرد) که بعضی از این اصول عبارت‌اند از:

1. NOTE و علاقه به طبیعت؛
2. NOTE و تفکر و توسعه علوم بین رشته‌ای؛
3. NOTE و توانایی حل مسئله؛
4. NOTE و کسب‌وکار توانایی هدف.

البته، تکنیک جزء به جزء از طبیعت اگر نامکمل نباشد، معمولاً کار ساده‌ای نیست. مانند

پرندگان من آدر از خنافسی الکترین گرفته شده بود، اما کهی دقیق از مکانیسم‌های اصلی نبود. مشی در طبیعت بی برد و بسی از این شناخت و آگاهی برای طراحی و ساختن و سایر و

ماشین‌های مهندسی استفاده کرد. این تناها راه واقعی تقلید از طبیعت است که بیشتر را باعث

سی‌شود و مرزین بیولوژی و مهندسی را در هم می‌ریزد و با دقت در خصوصیات شکلی و

اصول حاکم بر جانداران، تغییرات صعیب تازه‌ای در ساخت و پیشرفت علوم مهندسی ایجاد

سی‌شود.

مراجع

1. A. Esser, S. Gleissle and E. Schomgachey, Bionics as Input for Innovative

Tire Lagout, Abstacy on line Database, Conferance 1999.


WWW. Automobile.Com.

4. Franco Iodato, Bionics: Lessons from Nature to Improve out future.,

WWW.about design.Com.

5. Glenn Zorpette and Carol EZZELL. Your Bionic future., Scientific


(تاريخ دریافت مقاله: 81/10/7)