آینده فناوری نانوالکترونیک

نوع مقاله: مقاله علمی - پژوهشی

نویسندگان

1 پژوهشگر پسادکتری دانشکده مهندسی برق دانشگاه صنعتی شریف

2 دانشجوی کارشناسی مهندسی الکترونیک، دانشکده مهندسی برق دانشگاه صنعتی شریف

3 دانشجوی کارشناسی ارشد مهندسی الکترونیک، دانشکده مهندسی برق دانشگاه صنعتی شریف

4 استاد گروه مهندسی الکترونیک، دانشکده مهندسی برق، دانشگاه صنعتی شریف

چکیده

در شش دهه‌ی گذشته از هنگام پیدایش ترانزیستور دوقطبی در آزمایشگاه‌های تلفن بل، گسترش پایدار صنعت الکترونیک اندازه‌ی ادوات نیمه‌هادی فعال را به کرانه‌های آن کوچک‌سازی کرده است. قانون مور که بیان می‌دارد هر هجده ماه سرعت ادوات دو برابر و ابعاد آن‌ها نصف می‌شود، به پایان سلطه‌ی خود نزدیک می‌شود. فن‌آوری تجاری کنونی از یک سو به ابعاد اتمی و از سوی دیگر به چگالی توان حرارتی محدود می‌گردد.
به طور خلاصه، علی‌رغم نیروی محرک و توان اقتصادی عظیم پشت این صنعت، گلوگاه‌هایی واقعی در این فن‌آوری وجود دارند و خود را هم‌اکنون به وضوح نشان می‌دهند. مسیرهایی که احتمالاً این محدودیت‌ها را مرتفع خواهند ساخت خیلی متعدد نیستند، و شامل نانوالکترونیک دوبعدی، شبکه‌های مِمریستوری، اسپینترونیک، ادوات نیمه‌هادی مرکب، الکترونیک نوری و نانواپتیک، می‌شود. هم‌چنین، انرژی خورشیدی و رایانش کوانتومی از دیگر مقوله‌های مرتبط هستند که به توسعه‌ی فیزیک و علم مواد اتکا دارند.
این مقاله سه پرسش اساسی را مورد کاوش قرار می‌دهد: (1) تاریخچه‌ی توسعه‌ی این فن‌آوری از بدو پیدایش چگونه بوده است؟ (2) مسیرهای پژوهشی فعلی در دنیا کدامند؟ (3) ریشه‌های واماندگی در کشور چیست و راه‌کارهای جبران آن و هم‌راهی با فعالیت‌های جهانی چگونه است؟
در این متن سعی خواهد شد به اختصار برخی از اساسی‌ترین سوء برداشت‌ها در مراکز علمی-پژوهشی ملی موشکافی شده و پیش‌نهادهایی برای اختصاص بودجه و شتاب‌دهی به ورود و پیشرفت در این قلمرو بیان گردد، به امید آن‌که نسل بعدی متخصصین ما از فضای گسترده‌تر و فعال‌تری برای پژوهش و پیش‌رفت برخوردار باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Future of the Nanoelectronics Technology

نویسندگان [English]

  • Mohammad Hasan Aram 1
  • Taha Rajabzadeh 2
  • Majid Aleizadeh 3
  • Sina Khorasani 4
1 Postdoctoral Fellow School of Electrical Engineering Sharif University of Technology
2 BSc Student, Electrical Engineering Department, Sharif University of Technology, Tehran, Iran.
3 MSc Student, Electrical Engineering Department, Sharif University of Technology, Tehran, Iran.
4 Professor, Electrical Engineering Department, Sharif University of Technology, Tehran, Iran
چکیده [English]

Since the advent of bipolar transistor at Bell AT&T laboratories, the
constant development of electronics industry over the past six decades
have pushed the size of active semiconductor devices to its boundaries.
The Moore's law which dictated doubling speed and halving physical
dimensions every 18 months is now facing its end pretty soon. Current
commercial technology is now being limited to the atomic spacing on one
hand, and power density on the other hand. Solar power as well as quantum
computing are also another relevant areas which would need certain
physical implementations and materials. In short, the moving force and
economic power behind this industry is enormous, however, technological
bottlenecks are real and showing themselves very clearly now.

Directions which may ultimately alleviate these restrictions are not too
many, including two-dimensional nano-electronics, memristive networks,
spintronics, compound semiconductor devices, optoelectronics
interconnects, just to mention a few.

This talk will address two important paradigms in this area

1) What are the real challenges in this technology?
2) What are the roots of retardation in our country and what can be done
to merge into the international efforts?

I will try to plant seeds to resolve some of the most basic
misunderstandings in our academia and redirect the technology investments
into a much more fruitful direction, with hopes that the next generation
of our experts will have a much wider and relaxed atmosphere to excel and
prosper.

کلیدواژه‌ها [English]

  • Nanoelectronics
  • Semiconductors
  • Transistors
  • Computing
  • Nanotechnology
  • Quantum Technologies
  • solar cells

بهناز قره‌خانلو، ترانزیستورهای دو قطبی دو بعدی، پایان‌نامه دکتری، دانشکده مهندسی برق، دانشگاه صنعتی شریف، خرداد 1393.

Akasaki, I.; Amano H. and Nakamura, S. (2014). The Nobel prize in physics.

Ali, F. (1991). HEMTs and HBTs: Devices, fabrication, and circuits: Artech House Publishers.

Arns, R. G. (1998). The other transistor: early history of the metal-oxide semiconductor field-effect transistor. Engineering Science and Education Journal, 7(5), 233-240.

Avouris, P.; Dresselhaus, G. and Dresselhaus, M. S. (2000). Carbon nanotubes: synthesis, structure, properties and applications. Topics in Applied Physics.

Bader, S. D. and Parkin, S. S. P. (2010). Spintronics. Annual Reviews of Condensed Matter Physics, 1(1), 71-88.

Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F. and Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), 902-907.

Baughman, R. H.; Cui, C.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. F.; Wallance, G. G.; Mazzoldin, A.; De Rossi, D.; Rinzler, A. G.; Jaschinski, O.; Roth,  S. and  Kertesz, M. (1999). Carbon nanotube actuators. Science, 284(5418), 1340-1344.

Bennett, C. H. and DiVincenzo, D. P. (2000). Quantum information and computation. Nature, 404(6775), 247.

Bohr, M. T.; Chau, R. S.; Ghani, T. and Mistry, K. (2007). The high-k solution. IEEE Spectrum, 44(10), 29-35.

Chodos, A.; Ouellette, J. and Tretkoff, E. (2001). This month in physics history. American Physical. Retrieved from ttps://www.aps.org/publications/apsnews/200011/history.cfm.

CLab, Carbon lab, Retrieved from http://carbonlab.roma2.infn.it/.

Dennard, R. H.; Gaensslen, F. H.; Rideout, V. L.; Bassous, E. and LeBlanc, A. R. (1974). Design of ion-implanted MOSFET's with very small physical dimensions. IEEE Journal of Solid-State Circuits, 9(5), 256-268.

Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. and Wong, H. S. P. (2016). MoS2 transistors with 1-nanometer gate lengths. Science, 354(6308), 99-102.

DiVincenzo, D. P. (1995). Quantum computation. Science, 270(5234), 255-261.

dWave, Retrieved from http://www.dwavesys.com/

Ebbesen, T. W. and Ajayan, P. M. (1992). Large-scale synthesis of carbon. Nature, 358, 220-222.

Everitt, H. O. (Ed.). (2007). Experimental aspects of quantum computing: Springer Science.

Feynman, R. P. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21(6), 467-488.

Frackowiak, E.; Metenier, K.; Bertagna, V. and Beguin, F. (2000). Supercapacitor electrodes from multiwalled carbon nanotubes. Applied Physics Letters, 77(15), 2421-2423.

Frank, I. W.; Tanenbaum, D. M.; van der Zande, A. M. and McEuen, P. L. (2007). Mechanical properties of suspended graphene sheets. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 25(6), 2558-2561.

Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M. and Iijima, S. (2006). Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature Materials, 5(12), 987.

Gad-el-Hak, M. (Ed.). (2005). MEMS: Introduction and fundamentals. CRC Press.

Geim, A. K. and Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191.

Geim, A. and Novoselov, K. (2010). The Nobel prize in physics.

Gharekhanlou, B.; Khorasani, S. and Sarvari, R. (2014). Two-dimensional bipolar junction transistors. Materials Research Express, 1(1), 015604.

Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E. P.; Nika, D. L.; Balandin, A. A.; ... and Lau, C. N. (2008). Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters, 92(15), 151911.

Guo, J.; Koswatta, S. O.; Neophytou, N. and Lundstrom, M. (2006). Carbon nanotube field-effect transistors. International Journal of High Speed Electronics and Systems, 16(04), 897-912.

Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D. T. and Smalley, R. E. (1995). Catalytic growth of single-walled manotubes by laser vaporization. Chemical Physics Letters, 243(1), 49-54.

Han, W. and Kawakami, R. K. (2011). Spin relaxation in single-layer and bilayer graphene. Physical Review Letters, 107(4), 047207.

Hruska, J. (2015). IBM announces 7nm breakthrough, builds first test chips on new process with EUV. Retrieved from http://www.extremetech.com/extreme/209523-ibm-announces-7nm-breakthrough-builds-first-test-chips-on-new-process-with-euv.

Huang, A. (2015). The death of Moore's law will spur innovation. IEEE Spectrum. Special report: 50 years of Moore’s law. Retrieved from https://spectrum.ieee.org/static/special-report-50-years-of-moores-law.

Hunsperger, R. G. and Meyer-Arendt, J. R. (1992). Integrated optics: theory and technology. Applied Optics, 31, 298.

IBM-Q, International Business Machines, Retrieved from http://www.ibm.com/ quantumcomputing.

Inami, N.; Mohamed, M. A.; Shikoh, E. and Fujiwara, A. (2007). Synthesis-condition dependence of carbon nanotube growth by alcohol catalytic chemical vapor deposition method. Science and Technology of Advanced Materials, 8(4), 292-295.

Jacobi, W. and Siemens, A. (1952). Halbleiterverstärker. [Semiconductor Amplifier], German patent, 833366.

Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M. and Dai, H. (2003). Ballistic carbon nanotube field-effect transistors. Nature, 424(6949), 654.

Jelezko, F.; Ladd, T. D.; Laflamme, R.; Monroe, C.; Nakamura, Y. and O’Brien, J. L. (2010). Quantum computers. Nature, 464.

Jha, A. R. (2008). MEMS and nanotechnology-based sensors and devices for communications, Medical and Aerospace Applications: CRC Press.

Johnsen, G. K. (2012). An introduction to the memristor-a valuable circuit element in bioelectricity and bioimpedance. Journal of Electrical Bioimpedance, 3(1), 20-28.

Johnson, D. (2015). Supercapacitors take huge leap in performance. IEEE Spectrum.

Khorasani, S. A. (2014). Tunable spontaneous emission from layered graphene/dielectric tunnel junctions. IEEE Journal of Quantum Electronics, 50(5), 307-313.

Kim, J.; Paul, A.; Crowell, P. A.; Koester, S. J.; Sapatnekar, S. S.; Wang, J. P. and Kim, C. H. (2015). Spin-based computing: device concepts, current status, and a case study on a high-performance microprocessor. Proceedings of the IEEE, 103(1), 106-130.

Kim, K. S.; Cota-Sanchez, G.; Kingston, C. T.; Imris, M.; Simard, B. and Soucy, G. (2007). Large-scale production of single-walled carbon nanotubes by induction thermal plasma. Journal of Physics D: Applied Physics, 40(8), 2375.

Knill, E. (2010). Physics: Quantum computing. Nature, 463(7280), 441-443.

Kobayashi, K. and Suematsu, Y. (1982). Effects of optical feedback on the characteristics of semiconductor lasers. Optical Devices and Fibers (OHM and North-Holland), 39.

Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K. and Dai, H. (2000). Nanotube molecular wires as chemical sensors. Science, 287(5453), 622-625.

Le Lay, G. (2015). 2D materials: Silicene transistors. Nature Nanotechnology, 10(3), 202-203.

Lee, C.; Wei, X.; Kysar, J. W.; and Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385-388.

Lee, S. J.; Chung, H. S.; Nahm, K. and Kim, C. K. (1990). Band structure of ternary-compound semiconductors using a modified tight-binding method. Physical Review B, 42(2), 1452.

Lilienfeld, J. E. (1930). Method and apparatus for controlling electric currents. U.S. Patent No. 1, 745, 175. Washington, DC: U.S. Patent and Trademark Office.

Lilienfeld, J. E. (1933). U.S. Patent No. 1,900,018. Washington, DC: U.S. Patent and Trademark Office.

 

Lojek, B. (2007). Shockley semiconductor laboratories. History of Semiconductor Engineering, 67-101.

Lu, M. (2013). Supercapacitors: Materials, systems and applications: John Wiley & Sons.

Lyshevski, S. E. (2002). MEMS and NEMS: Systems, devices, and structures: CRC Press.

Mack, C. (2015). The multiple lives of Moore's law. IEEE Spectrum, 52(4), 31-31.

Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T. and Avouris, P. (1998). Single-and multi-wall carbon nanotube field-effect transistors. Applied Physics Letters, 73(17), 2447-2449.

Matocha, K.; Chow, T. P. and Gutmann, R. J. (2005). High-voltage normally off GaN MOSFETs on sapphire substrates. IEEE Transactions on Electron Devices, 52(1), 6-10.

Mazumder, P.; Kang, S. M. and Waser, R. (2012). Memristors: Devices, models, and applications. Proceedings of the IEEE, 100(6), 1911-1919.

McAlpine, T. C.; Greene, K. R.; Santilli, M. R.; Olafsen, L. J.; Bewley, W. W.; Felix, C. L.; Vurgaftman, I.; Meyer, J. R.; Yang, M. J.; Lee, H. and Martinelli, R. U. (2004). Progress in compound semiconductor materials III-electronic and optoelectronic applications. In MRS Symposia Proceedings, 799, 211.

Modi, A.; Koratkar, N.; Lass, E.; Wei, B. and Ajayan, P. M. (2003). Miniaturized gas ionization sensors using carbon nanotubes. Nature, 424(6945), 171.

Monroe, C. (2002). Quantum information processing with atoms and photons. Nature, 416(6877), 238-246.

Moore, G. E. (1998). Cramming more components onto integrated circuits. Proceedings of the IEEE, 86(1), 82-85.

Neto, A. C.; Guinea, F.; Peres, N. M.; Novoselov, K. S. and Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109.

Nguyen, C. T. C. (2007). MEMS technology for timing and frequency control. IEEE Transactions on Ultrasonic, Ferroelectrics, and Frequency Control, 54(2).

Nguyen, C. T. C. (2013). MEMS-based RF channel selection for true software-defined cognitive radio and low-power sensor communications. IEEE Communications Magazine, 51(4), 110-119.

Nielsen, M. A. and Chuang, I. (2000). Quantum computation and quantum information: Cambridge University Press.

NMAI, Neuro-memristive artificial intelligence, Retrieved from http://knowm.org/No Moore?, (2013,November).Retrieved from https://www.economist.com/news/21589080-golden-rule-microchips-appears-be-coming-end-no-moore.

NSM archive, aluminum gallium arsenide (AlGaAs), Retrieved from http://www.ioffe.ru/SVA/NSM/Semicond/AlGaAs/index.html.

Ounaies, Z.; Park, C.; Wise, K. E.; Siochi, E. J. and Harrison, J. S. (2003). Electrical properties of single wall carbon nanotube reinforced polyimide composites. Composites Science and Technology, 63(11), 1637-1646.

Shor, P. W. (1994). Algorithms for quantum computation: discrete logarithms and factoring. 35th Annual Symposium on Foundations of Computer Science.

Parkin, S.; Jiang, X.; Kaiser, C.; Panchula, A.; Roche, K. and Samant, M. (2003). Magnetically engineered spintronic sensors and memory. Proceedings of the IEEE, 91(5), 661-680.

Parpala, M. (2014). The US semiconductor industry: A key contributor to US economic growth. Semiconductor Industry Association.

Peleg, R. (2015, June 15). Strengthening solar cell performance with graphene. Retrieved from­http://www.renewableenergyworld.com/articles/2015/06/strengthening-solar-cell-performance-with-graphene.html.

Reich, S.; Thomsen, C. and Maultzsch, J. (2008). Carbon nanotubes: Basic concepts and physical properties: John Wiley & Sons.

Rhines, W. C. (2016, April). Moore's law and the future of solid-state electronics. Retrieved from http://blogs.scientificamerican.com/guest-blog/moore-s-law-and-the-future-of-solid-state-electronics/.

Rieffel, E. G. and Polak, W. H. (2011). Quantum computing: A gentle introduction: MIT Press.

Saxena, A. K. (1980). The conduction band structure and deep levels in ga1-xAlxAs alloys from a high-pressure experiment. Journal of Physics C: Solid State Physics, 13(23), 4323.

Saxena, A. K. (1981). Electron mobility in ga1− xAlxAs alloys. Physical Review B, 24(6), 3295.

Schwierz, F. (2010). Graphene transistors. Nature nanotechnology, 5(7), 487-496.

Simonite, T. (2016, April 2014), Why a chip that’s bad at math can help computers tackle harder problems. Retrieved from https://www.technologyreview.com/s/601263/why-a-chip-thats-bad-at-math-can-help-computers-tackle-harder-problems/.

Son, Y. W.; Cohen, M. L. and Louie, S. G. (2006). Energy gaps in graphene nanoribbons. Physical Review Letters, 97(21), 216803.

Steane, A. (1998). Quantum computing. Reports on Progress in Physics, 61(2), 117.

Supercapacitor, Retrieved from https://en.wikipedia.org/wiki/Supercapacitor.

The U.S. Semiconductor Industry Association(2016). Fact book.

Thomas, A. (2013). Memristor-based neural networks. Journal of Physics D: Applied Physics, 46(9), 093001.

Tiwari, S. (2013). Compound semiconductor device physics: Academic Press.

Wang, K. L.; Alzate, J. G. and Amiri, P. K. (2013). Low-power non-volatile spintronic memory: STT-RAM and beyond. Journal of Physics D: Applied Physics, 46(7), 074003.

Wei, B. Q.; Vajtai, R. and Ajayan, P. M. (2001). Reliability and current carrying capacity of carbon nanotubes. Applied Physics Letters, 79(8), 1172-1174.

Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; Von Molnar, S.; Roukes, M. L.; Chtchelkanova, A. Y. and Treger, D. M. (2001). Spintronics: A spin-based electronics vision for the future. Science, 294(5546), 1488-1495.

Wolf, S. A.; Lu, J.; Stan, M. R.; Chen, E. and Treger, D. M. (2010). The promise of nanomagnetics and spintronics for future logic and universal memory. Proceedings of the IEEE, 98(12), 2155-2168.

Yeow, T. W.; Law, K. E. and Goldenberg, A. (2001). MEMS optical switches. IEEE Communications Magazine, 39(11), 158-163.