نوع مقاله : مقاله علمی - پژوهشی

نویسنده

استادیار دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی،

چکیده

فناوری مخابرات خطوط قدرت با بهره­گیری از شبکه قدرت و سیم­کشی­های آن در همه سطوح ولتاژ به­عنوان یک بستر مخابراتی نسبت به ارسال و دریافت اطلاعات اقدام می­کند. بی­نیازی به سیم­کشی و نصب زیرساخت جدید برای پیاده­سازی این فناوری به­همراه ضریب نفوذ بالای شبکه برق در سطح دنیا و دسترسی آسان به آن ازجمله مهم­ترین دلایل روی­آوری به این فناوری و گسترش روزافزون آن در طی سالیان متمادی بوده­اند. امروزه، با گذشت بیش از یک قرن از عمر این فناوری، سیستم­های مخابرات خطوط قدرت موجود در قالب سه دسته عمده سیستم­های فوق­باریک­باند، باریک­باند و پهن­باند قابل تقسیم­بندی است که طراحی هر کدام بر مبنای کاربرد و استانداردی خاص است. این مقاله به بررسی جامع سیر تکاملی این فناوری در قالب دسته­بندی فوق اختصاص دارد که شامل مباحث مختلفی از تاریخچه، مزایا، چالش­های مخابراتی و گستره وسیع کاربری این فناوری تا معرفی پروژه­های استانداردسازی جهانی، تجهیزات و سازندگان آنها و نقش کلیدی آن در هوشمندسازی شبکه قدرت است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evolution of power line communications: From a fixed telephone system to telecommunication technology of smart energy grid

نویسنده [English]

  • Mohsen Sheikh-Hosseini

Department of Computer and Information Technology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

چکیده [English]

 
Abstract­- Power line communications (PLC) technology utilizes the power grid infrastructure and its wiring as a communications channels for information transmission and reception. No need to install of new structure and wiring together with the wide spread availability and easy accessibility of power grids are the main reasons for appearance and development of this technology over the years. Nowadays, one century after the discovery of this technology, existing PLC systems can be subdivided under three main classes of ultra-narrowband, narrowband and broadband systems, where, each one has been dedicated for a special application and is based on a specific standard. Within the framework of aforementioned grouping, this paper provides a comprehensive study on the historical evolution of this technology which includes from the historical review, advantages, telecommunication challenges and application areas of this technology to the presentation of worldwide standardization projects, equipment and their providers, and its key role on making the future gird smarter.

کلیدواژه‌ها [English]

  • Frequency bandwidth
  • data rate
  • ultra-narrowband
  • narrowband and broadband systems
  • smart energy grid
  • power line communications technology
شناسایی فناوری­های جدید در زمینه تولید، انتقال و توزیع برق انتقال اطلاعات از طریق خطوط برق به مصرف کننده نهایی، (1387). مجری: مؤسسه پژوهش در مدیریت و برنامه­ریزی انرژی به سفارش دفتر برنامه­ریزی کلان برق و انرژی وزارت نیرو.
شیخ­حسینی، محسن (1397). پیشرفت­های فناوری مخابرات خطوط قدرت در جهت هوشمندسازی شبکه برق. کنفرانس پیشرفت های اخیر در مهندسی و علوم نوین، مرکز همایش­های بین­المللی صدا­و­سیما، تهران.
فتوحی فیروزآبادی، محمود و رستگار، محمد (1393). شبکه هوشمند؛ نظامی نوین در صنعت برق، فصلنامه آموزش مهندسی ایران، 12(62)، 79-47.
Ancillotti, E.; Bruno, R. and Conti, M. (2013). The role of communication systems in smart grids: Architectures, technical solutions and research challenges. Computer Networks, 36(17), 1665–1697.
Andreadou, N.; Guardiola, M. O. and Fulli, G. (2016). Telecommunication technologies for smart grid projects with focus on smart metering applications. Energies, 9(5).
Aruzuaga; A.; Berganza, I.; Sendin, A.; Sharma, M. and Varadarajan, B. (2010). PRIME interoperability tests and results from field. In: Proceedings of IEEE SmartGridComm 2010, Gaithersburg, MD, USA.
Barzola J. and Rubini, L. (2017). A Hypothetical Migration Analysis of the PLC based on IEEE 1901.2 Standard, In: Proceedings of 1st World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando; United States.
Biglieri, E. (2003). Coding and Modulation for a Horrible Channel.IEEE Communications Magazine, 41(5), 92-98.
Brown, P. A. (1999). Power line communications—past present and future.In: Proceedings of IEEE ISPLC 1999, Lancaster, UK.
Cano, C.; Pittolo, A.; Malone, D.; Lampe, L.; Tonello, A. M. and Dabak, A. G. (2016). State-of-the-art in power line communications: From the applications to the medium. IEEE Journal on Selected Areas in Communications, 34(7), 1935-1952.
Carcelle, X. (2009). Power line communications in practice, Artech House, Boston.
             CENELEC Std. EN 50065-1, (1992). Signaling on Low-Voltage ElectricalInstallations in the Frequency Range 3 kHz–148.5 kHz.
Chen, S.; Setta, M.; Chen, X. and Parini, C. G. (2009). Ultra-Wideband Powerline Communication (PLC) above 30MHz. IET Communications, 3(10), 1587-1596.
Depari, A.; Ferrari, P.; Flammini, A.; Rinaldi, S.; Sisinni, E. and Vezzoli, A. (2013). On the use of prime powerline communication in industrial applications: Modbus a first test case. In: Proceedings of IEEE MTC 2013, Minneapolis, MN, USA.
Dib, L. d. M. B. A.; Fernandes, V.; Filomeno, M. D. L. F. and Ribeiro, M. V. (2018). Hybrid PLC/Wireless communication for smart grids and internet of things applications. IEEE Internet of Things Journal, 5(2), 655-667.
Dzung, D.; Berganza, I. and Sendin, A. (2011). Evolution of powerline communications for smart distribution: From ripple control to OFDM.In: Proceeding of IEEE ISPLC 2011, Udine, Italy.
Electric Power Research Institute (EPRI) (2009).Report to NIST on the Smart Grid Interoperability Standards Roadmap.
Farhangi, F. (2010).The path of the smart grid. IEEE Power Energy Magazine, 8(1), 18–28.
Fang, X.; Misra, S.; Xue, G. and Yang, D. (2012). Smart grid—the new and improved power grid: A survey. IEEE Communications Surveys Tutorials, 14(4), 944–980.
Ferreira, H. C.; Lampe, L.; Newbury, J. and Swart, T. G. (2010). Power line communications: Theory and applications for narrowband and broadband communications over power lines, 1st edition, New York: Wiley.
Galli, S.; Scaglione A. and Wang Z. (2011). For the grid and through the grid: The role of power line communications in the smart grid. Proceedings of the IEEE, 99, 998–1027.
Galli, S. and Lys, T. (2015). Next generation narrowband (Under 500 kHz) power line communications (PLC) standards. China Communications, 12(3), 1-8.
Galli, S. and Logvinov, O. (2008). Recent developments in the standardization of power line communications within the IEEE. IEEE Communications Magazine, 46, 64-71.
Haidine, A.; Tabone, A. and Muller, J. (2013). Deployment of power line communication by European utilities in advanced metering infrastructure. In: Proceeding of IEEE ISPLC 2013, Johannesburg, South Africa.
IEEE Standards 643-2004, (2005). IEEE guide for power-line carrier applications.
IEEE Std 2030, (2011). Guide for smart gridInteroperability of energy technology and information technology operation with the electric power system, End-Use applications, and loads.
Kabalci, Y. (2016). A survey on smart metering and smart grid communication. Renewable and Sustainable Energy Reviews, 57, 302–318.
Kuzlu, M.; Pipattanasomporn, M. and Rahman, S.(2014). Communication network requirements for major smart grid applications in HAN, NAN and WAN. Computer Networks, 67, 74–88.
Lampe, L.; Tonello, A.M. and Swart, T. G. (2016). Power line communications: Principles, standards and applications from sultimedia to smart grid, 2nd Edition, John Wiley.
Loubery, C. R. (1901).Improved method of telegraphing, indicating time, or actuating mechanism electrically, British Patent GB 190 000 138.
Mak S. and Reed, D. (1982).TWACS, a newviable two-way automatic communicationsystem for distribution networks. Part I: Outbound communication. IEEE Transactions on Power Apparatus and Systems, PAS-101(8), 2941–2949.
Mak S. and Reed, D. (1984). TWACS, a newviable two-way automatic communicationsystem for distribution networks. Part II: Inbound communication. IEEE Transactions on Power Apparatus and Systems, PAS-103(8), 2141–2147.
Masood, B. and Baig, S. (2016). Standardization and deployment scenario of next generation NB-PLC technologies. Renewable and Sustainable Energy Reviews, 65, 1033-1047.
Mlynek, P.; Misurec, J.; Kolka, Z.; Slacik, J. and Fujdiak, R. (2015). Narrowband power line communication for smart metering and street lighting control. IFAC-PapersOnLine, 48(4), 215-219.
Moaveninejad, S.; Saad, A. and Magarini, M. (2017). Enhancing the performance of WiNPLC smart grid communication with MIMO NB-PLC. In: Proceeding of IEEE EEEIC2017, Milan, Italy.
Neuberg, A. (2009). Ripplc control in the Czech Republic and demand side management. In: Proceeding of IEEE CIRED 2009, Prague, Czech Republic.
Park, C. U.; Lee, J. J.; Oh, S. K.; Bae, J. M. and Seo, J. K. (2012). Study and field test of power line communication for an electric-vehicle charging system. In: Proceedings of IEEE ISPLC 2012, Beijing, China.
Pisapan, P.; Rakwichian, W.; Wongpanyo, W.; Vichanpol, B. and Chailuecha, C. (2018). The principle of power line communications for home energy management system of smart grid technology in Thailand. Journal of Renewable Energy and Smart Grid Technology, 13(1), 1-12.
Razazian, K.; Umari, M.; Kamalizad, A.; Loginov, V. and Navid, M. (2010). G3-plc specification for powerline communication: Overview system simulation and field trial results. In: Proceedings of IEEE ISPLC 2010, Rio de Janeiro, Brazil.
Razazian, K.; Kamalizad, A.; Umari, M.; Qu, Q.; Loginov, V. and Navid, M. (2011).G3-plc field trials in US distribution grid: Initial results and requirements. In: Proceedings of IEEE ISPLC 2011, Udine, Italy.
Routin, J. and Brown C. E. L. (1989), Improvements in and relating to electricity meters, British Patent GB 189 724 833.
Schwartz, M. (2009). Carrier-wave telephony over power lines: Early history. IEEE Communications Magazine, 47(1), 14–18.
Sendin, A.; Berganza, I.; Aruzuaga; A.; Pulkkinen, A. and Kim, I. H. (2012). Performance results from 100,000+ PRIME Smart Meters Deployment in Spain. In: Proceedings of IEEE SmartGridComm 2012, Tainan, Taiwan.
Sharma, K. and Saini, L. M. (2017). Power-line communications for smart grid: Progress, challenges, opportunities and status. Renewable and Sustainable Energy Reviews, 67, 704–751.
The U.S. Department of Energy’s Report (2008).The smart grid: An introduction.
Thordarson, C. H. (1905).Electric central station recoding mechanism for meters, U.S. Patent US 784 712.
Uribe-Perez, N.; Angulo, I.; Vega, D. D. L.; Arzuaga, T.; Fernandez, I. and Arrinda, A. (2017). Smart Grid Applications for a Practical Implementation of IP over Narrowband Power Line Communications. Energies, 10(11), https://doi.org/10.3390/en10111782.
Usman A. and Shami A.H. (2013). Evolution of communication technologies for smart grid applications. Renewable and Sustainable Energy Reviews, 19, 191–199.
www.alliedmarketresearch.com
www.g3-plc.com
www.homeplug.org
www.hd-plc.org
www.hdplc.org/modules/products/panasonic.html
www.marketsandmarkets.com
www.prime-alliance.org
www.researchandmarkets.com
www.zyxel.com/uk/en/products_services/pla_400.shtml
X-10 protocol for the Marmitek XM10 OEM Controller.Available https://www.pahedomotica.nl/pdf/xm10.pdf 
Yan, Y.; Qian, Y.; Sharif, H. and Tipper D. (2013). A survey on smart grid communication infrastructures: Motivations, requirements and challenges. IEEE Communications Surveys Tutorials, 15(1), 5–20.
Yigit, M.; Gungor, V. C.; Tuna, G.; Rangoussi, M. and Fadel, E. (2014). Power line communication technologies for smart grid applications: A review of advances and challenges. Computer Networks, 70, 366–383.
Zimmermann, M. and Dostert, K. (2002). A Multipath Model for the Powerline Channel. IEEE Transactions on Communications, 50(4), 553-559.
Zimmermann, M. and Dostert, K. (2002). Analysis and modeling of impulsive noise in broadband powerline communications,IEEE Transactions Electromagnetic Compatibility, 44(1), 248-258.