کاربردی از هندسه جبری در بهینه‌سازی

نوع مقاله: مقاله علمی - پژوهشی

نویسنده

استادیار گروه علوم پایه، دکترای ریاضی، دانشگاه صنعتی اراک، اراک، ایران

10.22047/ijee.2019.167343.1616

چکیده

هندسه جبری یکی از شاخه‌های پویای ریاضیات محض بوده که بخش وسیعی از تحقیقات حال حاضر متخصصین ریاضی در دنیا را به خود اختصاص داده است. در این شاخه از علم، مسائل هندسی با زبان جبر بیان و مورد بررسی قرار می‌گیرند. با گسترش تکنولوژی در دهه‌های اخیر، ارتقا سرعت و قدرت پردازش رایانه‌ها، شاخه هندسه جبری محاسباتی بیش از پیش مورد توجه قرار گرفته است. امروزه شاهد ارائه الگوریتم‌های متنوعی برای حل مسائل هندسه جبری توسط نرم‌افزارهای مختلف هستیم. از سوی دیگر، بهینه‌سازی ریاضی یکی از شاخه‌های توانای ریاضیات کاربردی بوده که امروزه دارای کاربردهای وسیعی در سایر علوم (از جمله علوم اقتصادی، اجتماعی و مهندسی) است. در این مقاله، قصد داریم با بیان چگونگی استفاده از روش‌های هندسه جبری برای حل مسائل بهینه‌سازی، خواننده را با نگاه هندسه جبری به حل برخی از مسائل آشنا سازیم. این روش‌ها را با بیان یک مثال از بهینه‌سازی مقید توضیح خواهیم داد. سرانجام نیز توسط کدنویسی در یکی از نرم‌افزارهای هندسه جبری محاسباتی با نام CoCoA به حل یک مثال بهینه‌سازی می‌پردازیم.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An application of algebraic geometry in optimization

نویسنده [English]

  • Dawood Hassanzadeh Lelekaami
Department of Basic Sciences, Arak University of Technology, P. O. Box 38135-1177, Arak, Iran.
چکیده [English]

Algebraic geometry is one of the dynamic branches of pure mathematics, which has received a large part of the current research of mathematical experts in the world. In this branch of science, geometric issues are expressed in algebraic language. With the advent of technology in recent decades, the advancement of computer speed and processing power, the computational algebraic geometry branch has been increasingly considered. Today, we are witnessing the introduction of various algorithms for solving algebraic geometry problems by various software. On the other hand, mathematical optimization is one of the most powerful branches of applied mathematics, which today has vast applications in other sciences (including economics, social sciences, and engineering). In this paper, we intend to introduce the reader to the algebraic geometry by solving some problems by exploring how to use algebraic geometry methods to solve optimization problems. We will explain these methods by expressing an example of optimization. Finally, we will work out an optimization code by coding in one of the computational algebraic geometry software called CoCoA.

کلیدواژه‌ها [English]

  • Algebraic Geometry
  • Groebner Bases
  • Buchberger’s Algorithm
  • optimization
  • CoCoA Software
Abbott, J., Bigatti, A. M., & Lagorio, G.(  ) CoCoA-5: A system for doing computations in commutative algebra, Available at http://cocoa.dima.unige.it.

Adams, W. W., & Loustaunau, P. (1994). An introduction to groebner bases, American Mathematical Society, Providence. 3.

Atiyah, M. F., & Macdonald, I. G. (1969). Introduction to commutative algebra. Addison-Wesley.

Blekherman, G., Parrilo, P. A., & Thomas, R. (2012). Semidefinite optimization and convex algebraic geometry (MPS-SIAM Series on Optimization). Society for Industrial and Applied Mathematics,13.

Cox, D., Little, J., & O’Shea, D. (2007). Ideals, varieties, and algorithms, springer science+business media. LLC. Undergraduate Texts in Mathematics.

Hartshorne, R. (1977). Algebraic geometry. No. 52, Springer-Verlag New York Inc.

Huynh, D. T. (1986). A superexponential lower bound for Groebner bases and church-rosser commutative thue systems. Information and Control, 68, 196-206.

Lange, K. (2004). Optimization, springer texts in statistics. Springer-Verlag New York.

Winkler, F. (1996). Polynomial algorithms in computer algebra. Springer-Verlag Wien, New York.