Abbott, J., Bigatti, A. M., & Lagorio, G.( ) CoCoA-5: A system for doing computations in commutative algebra, Available at
http://cocoa.dima.unige.it.
Adams, W. W., & Loustaunau, P. (1994). An introduction to groebner bases, American Mathematical Society, Providence. 3.
Atiyah, M. F., & Macdonald, I. G. (1969). Introduction to commutative algebra. Addison-Wesley.
Blekherman, G., Parrilo, P. A., & Thomas, R. (2012). Semidefinite optimization and convex algebraic geometry (MPS-SIAM Series on Optimization). Society for Industrial and Applied Mathematics,13.
Cox, D., Little, J., & O’Shea, D. (2007). Ideals, varieties, and algorithms, springer science+business media. LLC. Undergraduate Texts in Mathematics.
Hartshorne, R. (1977). Algebraic geometry. No. 52, Springer-Verlag New York Inc.
Huynh, D. T. (1986). A superexponential lower bound for Groebner bases and church-rosser commutative thue systems. Information and Control, 68, 196-206.
Lange, K. (2004). Optimization, springer texts in statistics. Springer-Verlag New York.
Winkler, F. (1996). Polynomial algorithms in computer algebra. Springer-Verlag Wien, New York.