نوع مقاله : مقاله علمی - پژوهشی

نویسنده

استادیار دانشکده هنر و معماری دانشگاه شیراز

چکیده

شبیه‌سازی انرژی از متداول­ترین روش­های تحلیل انرژی در محیط ساختمان و معماری است که در دهه اخیر در کشور ما با اقبال فراوان دانشجویان و استادان این حوزه مواجه شده است. در حال حاضر، این آموزش به­صورت رسمی و غیر رسمی در دانشکده‌های معماری به­ویژه در مقاطع کارشناسی ارشد صورت می­گیرد. گرچه کاربرد شبیه‌سازی انرژی ساختمان مزایای بسیاری دارد، با توجه به پیچیدگی­های این ابزارها، دستیابی به نتایج با دقت و صحت مطلوب، نیازمند توجه به پارامترهایی معین است. متأسفانه، در کشور ما درخصوصروشوکیفیتآموزششبیه‌سازی انرژی ساختمان و محیط شهری به دانشجویانرشتهمعماری و شهرسازیپژوهشیانجامنشدهاست. پژوهش حاضر با هدف بررسی شرایط موجود در آموزش شبیه‌سازی انرژی ساختمان و محیط شهری و با استفاده از روش پژوهش کیفی صورت گرفته و میزان آگاهی دانشجویان در زمینه مهم­ترین مسائل مرتبط تحلیل شده است. برای جمع­آوری داده‌ها از مصاحبه و پرسشنامه نیمه‌باز استفاده شد و جامعه آماری دانشجویان و دانش­آموختگان کارشناسی ارشد معماری در چهار دانشگاه کشور بودند. نتایج پژوهش نشان‌دهنده میزان آگاهی اندک دانشجویان از مقوله‌های اساسی شبیه‌سازی انرژی است. بر اساس نتایج، میزان توجه دانشجویان به مسائل اساسی در شبیه‌سازی انرژی ساختمان در مواردی چون دانش پایه، اعتبارسنجی درونی و میزان عدم قطعیت نتایج اندک است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of the necessity of comprehensive energy simulation training for master of architecture students

چکیده [English]

Energy simulation is one of the most commonly used methods in energy analysis of buildings and architectural environment which has been widely used by students and professors in our country during the last decade. Simulation training is done either formal or informal in colleges especially to master degree students. Although the application of building energy simulation has many advantages, due to the complexity of these tools, achieving precise and accurate results requires considering several main issues. Unfortunately, in our country, no research had been done on the methodology and training quality of buildings energy simulation and urban environment. The present study aims to investigate training quality of building energy simulation using qualitative research method to analyze students' awareness about this most important issue. Data were collected by means of interview and semi-open questionnaires. The statistical population of the study was students and graduate students in architecture from four universities of the country. The results of the research indicate that the students' awareness of the main categories of energy simulation is low. Based on the results, the students' attention to the fundamental issues in building energy simulation in some cases such as basic knowledge, internal validation, and uncertainty of results are scarce.

کلیدواژه‌ها [English]

  • Architectural training
  • energy simulation
  • simulation soft wares
  • master degree
  • simulation training
Altomonte, S., Cadima, P., Yannas, S., Herde, A. D., Riemer, H., Cangelli, E., Asiain, M. L. D., & Horvath, S. (2012). Educate! Sustainable environmental design in architectural education and practice. In 28th International PLEA Conference.
Altomonte, S., Rutherford, P., & Wilson, R. (2014). Mapping the way forward: Education for sustainability in architecture and urban design. Corporate Social Responsibility and Environmental Management, 21(3), 143-154.
Azizi, Sh. (2010). Necessity of flexible system of architecture education in response to global and native sustainability challenges. Hoviat-e-Shahr, 5(7), 43-52 [in Persian].
Brohus, H., Heiselberg, P., Simonsen, A., & Sørensen, K. C. (2009). Uncertainty of energy consumption assessment of domestic buildings. In Proceedings of the 11th International Building Performance Simulation Association Conference.
CIBSE (1999). Environmental design, CIBSE Guide A. Chartered Institution of Building Services Engineers.
Clarke, J. (2001). Energy simulation in building design. Butterworth-Heinemann.
De Wit, M. S. (1997). Influence of modeling uncertainties on the simulation of building thermal comfort performance. In Proceedings of the 5th International IBPSA Conference on Building Simulation.
De Wit, M. S., & Augenbroe, G. (2002). Analysis of uncertainty in building design evaluations and its implications, Energy and Buildings, 34(9), 951-958.
Ding, Y., Shen, Y., Wang, J., & Shi, X. (2015). Uncertainty sources and calculation approaches for building energy simulation models. In 6th International Building Physics Conference, IBPC 2015. Energy Procedia, 78, 2566 - 2571.
Fabrizio, E. & Monetti, V. (2015). Methodologies and Advancements in the calibration of building energy models. Energies, 8, 2548-2574.
Faham, E., & Rajabi Nahuji, M. (2014). Modeling the competencies of faculty members for sustainability education using system dynamics analysis. Iranian Engineering Education, 16 (64), 89-115.[in Persian].
Fakhari, M. (2014). The effect of energy simulation softwares in design process and its status in sustainable architecture education. Fifth Conference on Architectural Education [in Persian].
Fumo, N. (2014). A review on the basics of building energy estimation. Renewable and Sustainable Energy Reviews, 31, 53-60.
Furbringer, J. M.; Foradini, F. and Roulet, C. (1994). Bayesian method for estimating airtightness coefficients from pressurization measurements. Building and environment, 29(2), 151-157.
Hammad, F., & Abu-Hijleh, B. (2010). The energy savings potential of using dynamic external louvers in an office building. Energy and Buildings, 42, 1888-1895.
Heiselberg, P., Brohus, H., Hesselholt, A., Rasmussen, H., Seinre, E., & Thomas S. (2009). Application of sensitivity analysis in design of sustainable buildings. Renewable Energy, 34(9), 2030-2036.
Hemsath, T. L., & Bandhosseini, K. A. (2015). Sensitivity analysis evaluating basic building geometry’s effect on energy use. Renewable Energy, 76, 526-538.
Hensen, J. L. M. (2004). Towards more effective use of building performance simulation. in design, In: Van Leeuwen, J.P. and H.J.P. Timmermans (eds.). Developments in Design & Decision Support Systems in Architecture and Urban Planning. Eindhoven: Eindhoven University of Technology, 291-306.
Hensen, J. L. M., & Radošević, M. (2004). Teaching building performance simulation – some quality assurance Issues and Experiences. In 21th PLEA international Conference on Passive and Low Energy Architecture.
Hopfe, C. J., & Hensen, J.  L. M.  (2011). Uncertainty analysis in building performance simulation for design support. Energy and Buildings, 43, 2798-2805.
Hopfe, C. J., Augenbroe, G., & Hensen, J. L. M. (2013). Multi-criteria decision making under uncertainty in building performance assessment. Building and Environment, 69, 81-90.
Hopfe, C. J. (2009). Uncertainty and sensitivity analysis in building performance simulation for decision support and design optimization, PhD thesis, Technische Universiteit Eindhoven.
Hopfe, C.J., Hensen, J. L. M., & Plokker, W. (2007). Uncertainty and sensitivity analysis for detailed design support. In Proceedings of the 10th IBPSA Building Simulation Conference.
http://www.architecture2030.org/building_sector , accessed on 16 September 2018.
Kurdjamshidi, M., & Poursahid, Sh. (2011). Teaching concepts related to sustainable architecture in the higher education system, challenges and solutions. In proceedings of the 2nd National Conference on Sustainable Architecture. [In Persian].
Lomas, K. J., & Herbert, E. (1992). Sensitivity analysis techniques for building thermal simulation programs. Energy and Buildings, 19 (1), 21-44.
Macdonald, I. A. (2002). Quantifying the effects of uncertainty in building simulation. PhD Thesis, University of Strathclyde.
Morbitzer, Ch. A. (2003). Towards the integration of simulation into the building design process, PhD Thesis, Department of Mechanical Engineering, Energy System Research Unit, University of Strathclyde.
Natanian, J., & Aleksandrowicz, OR. (2018). Environmental education of an architect: The case of final-year design studio at the technion, Israel. Archnet-IJAR: International Journal of Architectural Research, 12(1), 356-366.
Reinhart, C. F., Dogan, T., Ibarra, D., & Samuelson, H. W. (2012). Learning by playing–teaching energy simulation as a game. Journal of Building Performance Simulation, 5(6), 359-368.
Rezaee, R., Brown, J., Augenbroe, G., & Kim, J. (2015). A new approach to the integration of energy assessment tools in CAD for early stage of design decision-making considering uncertainty. In Proceedings of the 10th European Conference on Product and Process Modelling.
Rodriguez, G. C., Andrés, A. C., Muñoz, F. D., López, J. M. C., & Zhang, Y. (2013). Uncertainties and sensitivity analysis in building energy simulation using macro parameters. Energy and Building, 67, 79-87.
Sadeghipour Roodsari, M. (2008). Application of simulation software in architectural design, a step to integrated architecture. Master Thesis. Shahid Beheshti University [in Persian].
Stergard, T.; Jensen, R. L. & Maagaard, S. E.(2016). Building simulations supporting decision making in early design-Areview. Renewable and sustainable Energy Reviews, 61, 187-201.
Tahsildust, M., & Zomorodian, Z. S. (2015). Education quality of sustainability and energy in architecture in Iran. Architecture. First International Conference and 4th National Conference on Engineering Education [in Persian].
Taleghani, M., Ansari, H. R., & Jennings, Ph. (2011). Sustainability in architectural education: A comparison of Iran and Australia. Renewable Energy, (36), 2021-2025.
Trcka, M., & Hensen, J. L. M. (2010). Overview of HVAC system simulation. Automation in Construction, 19(2), 93-99.
Walker, W. E., Harremoe, P., Rotmans, J.,  van der Sluijs, J. P.,  Asselt, M., & Janssen, P. (2003). Defining uncertainty: A conceptual basis for uncertainty management in model-based decision support. Integrated Assessment, 5(17), 13-14.
Wei, T. (2013). A review of sensitivity analysis methods in building energy analysis. Renewable and Sustainable Energy Reviews, 20, 411-419.
www.energydesignresources.com, accessed on 16 September 2018.
Zhai, Z. (2006). Application of computational fluid dynamics in building design: Aspects and Trends. Indoor and Built Environment, 15(4), 305-313.