نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

دانشگاه امیرکبیر

چکیده

 دانشکده مهندسی شیمی دانشگاه صنعتی امیرکبیر، با بازنگری در برنامه درسی، سرفصل جدیدی از دروس مهندسی شیمی از جمله مجموعه دروس ترمودینامیک را تدوین کرده است. این کار با هدف هماهنگی با روند فعلی آموزش مهندسی شیمی در سراسر جهان و پاسخگویی به انتظارات صنعت از فارغ ‏التحصیلان مهندسی شیمی انجام گرفته است. بر اساس برنامۀ پیشنهادی پیشین وزارت علوم، تحقیقات و فناوری، تمرکز بخشی از درس ترمودینامیک 2 بر چرخه ‏های ترمودینامیکی بود. ناگزیر محتوای دروس پوشش کافی از برخی موارد مختص رشتۀ مهندس شیمی از جمله انواع تعادلات فازی (تعادلات دیگر علاوه بر تعادل بخار- مایع) نداشت. در این مقاله به بیان گزیده‏ای از مطالب در خصوص محتوا و سرفصل مطالب دروس ترمودینامیک مهندسی شیمی، کتاب‏ های مرجع رایج و روش‏های تدریس این درس در دانشگاه ‏های منتخب دنیا پرداخته می ‏شود. در نهایت محتوا و سرفصل پیشنهادی، به انضمام نکاتی در خصوص روش‏ های یاددهی، رویکرد یادگیری فعال و منابع مناسب موجود برای مجموعه دروس ترمودینامیک، با هدف بهبود طراحی درس و آموزش ترمودینامیک مهندسی شیمی ارائه می‏ گردد. هدف تحقیق حاضر بهبود محتوا و طرح درس و روش ‏های آموزش مجموعه دروس ترمودینامیک مهندسی شیمی است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

CHEMICAL ENGINEERING THERMODYNAMICS: REVISING CONTENT AND TEACHING METHODS

نویسندگان [English]

  • Leila Zargarzadeh
  • Gholamreza Pazuki

Amirkabir University of Technology

چکیده [English]

To align with current trends in chemical engineering education worldwide and meet the industry’s expectations from chemical engineering graduates, the Faculty of Chemical Engineering at Amirkabir University of Technology undertook a curriculum revision. It was conducted a comprehensive analysis of the curriculum of selected universities across the globe, taking into account the industrial requirements. Based on this analysis, new syllabi for chemical engineering thermodynamic courses, were developed. Based on the previous syllabus proposed by the Ministry of Science, Research, and Technology, the thermodynamic courses offered in the chemical engineering programs at Iranian universities dedicated a significant portion of the curriculum to various types of thermodynamic cycles. Consequently, the courses did not sufficiently cover topics specific to chemical engineering, such as different types of phase equilibria, in addition to vapor-liquid equilibrium. This article briefly overviews the course content and syllabi, reference books commonly used, and teaching methods used in renowned universities worldwide for thermodynamic courses in chemical engineering. Furthermore, we present the proposed syllabi and course plans, along with valuable insights into teaching strategies, active learning approaches, and recommended resources for thermodynamic courses. Our objective is to improve the course plan and instructional techniques employed in teaching chemical engineering thermodynamics.

کلیدواژه‌ها [English]

  • Chemical engineering thermodynamics
  • phase equilibrium thermodynamics
  • syllabus
  • course plan
  • active learning
Ahlström, P., Aim, K., Dohrn, R., Elliott, J. R., Jackson, G., Jaubert, J. N., … Economou, I. G. (2010). A Survey of the role of thermodynamics and transport properties in ChE university education in Europe and the USA. Chemical Engineering Education, 44, 35–43.
Atkins, P. W., de Paula J., K. J. (2017). Physical Chemistry, 11th ed. In Oxford University Press, Oxford.
Bameri, M., Salimi, G., Marzooqi, R., Safavi, S. A., & Mohammadi, M. (2023). Competencies of engineering students and equirements of universities and higher education centers to adapt to Industry 4.0: A study based on the meta-synthesis. Iranian Journal of Engineering Education, 24(96), 1–30. https://doi.org/10.22047/ijee.2022.352365.1930 [In Persion].
Cengel, Y. A., Translated by Zarei, G. (2004). Innovative approaches in teaching thermodynamics. Iranian Journal of Engineering Education, 6(22), 75–98. https://doi.org/10.22047/ijee.2004.2203 [In Persion].
Dahm, K., & Visco, D. (2014). Fundamentals of chemical Engineering thermodynamics SI edition. Cengage.
De Hemptinne, J. C., Kontogeorgis, G. M., Dohrn, R., Economou, I. G., Ten Kate, A., Kuitunen, S., … Vesovic, V. (2022). A view on the future of applied thermodynamics. Industrial and Engineering Chemistry Research, 61(39), 14664–14680. https://doi.org/10.1021/ACS.IECR.2C01906/ASSET/IMAGES/LARGE/IE2C01906_0006.JPEG.
Economou, I. G., Kontogeorgis, G. M., Dohrn, R., & de Hemptinne, J. C. (2014, December 1). Advances in thermodynamics for chemical process and product design. Chemical Engineering Research and Design, Vol. 92, pp. 2793–2794. https://doi.org/10.1016/j.cherd.2014.10.021.
Elliott, J. A. W. (2021). Surface thermodynamics at the nanoscale. Journal of Chemical Physics, Vol. 154. https://doi.org/10.1063/5.0049031.
Elliott, J. R., & Lira, C. T. (2012). Introductory chemical engineering thermodynamics. Prentice Hall.
Felder, R. M., & Brent, R. (2004). The ABC’s of engineering education: ABET, bloom’s taxonomy, cooperative learning, and so on. ASEE Annual Conference Proceedings.
Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences of the United States of America, 111(23). https://doi.org/10.1073/pnas.1319030111.
Hendriks, E., Kontogeorgis, G. M., Dohrn, R., De Hemptinne, J. C., Economou, I. G., Ẑilnik, L. F., & Vesovic, V. (2010). Industrial requirements for thermodynamics and transport properties. Industrial and Engineering Chemistry Research, 49(22). https://doi.org/10.1021/ie101231b.
Iqbal, A. (2022). Formative assessment in engineering education: Exploring ways to enhance students’ learning achievement. https://doi.org/https://doi.org/10.26076/AE3C-9BA3.
Kontogeorgis, G. M., Dohrn, R., Economou, I. G., De Hemptinne, J. C., Kate, A., Kuitunen, S., … Vesovic, V. (2021). Industrial requirements for thermodynamic and transport properties: 2020. Industrial and Engineering Chemistry Research, 60 (13), 4987 – 5013. https://doi.org/ 10.1021/ ACS.IECR.0C05356/ SUPPL_FILE/ IE0C05356_SI_001.PDF.
Koretsky, M. D., Falconer, J. L., Brooks, B. J., Gilbuena, D. M., Silverstein, D. L., Smith, C., & Miletic, M. (2014). The AIChE concept warehouse: A web-based tool to promote concept-based instruction. Advances in Engineering Education, 4(1).
Mazur, E. (1996). Peer Instruction: A user’s manual. In Peer Instruction. Pearson.
Memarian, H. (2013). Revaluation of engineering education. Iranian Journal of Engineering Education, 15(57), 1–18. https://doi.org/10.22047/ijee.2013.2959.
Milo D. Koretsky. (2012). Engineering and Chemical Thermodynamics. In Wiley. https://doi.org/10.1017/CBO9781107415324.004.
Prince, M., Felder, R., & Brent, R. (2020). Active student engagement in online STEM classes: Approaches and recommendations. Advances in Engineering Education, 8(4).
Problem-based learning (PBL) – Department of chemical engineering. (n.d.). Retrieved June 5, 2023, from https://www.eng.mcmaster.ca/chemeng/problem-based-learning-pbl/#tab-content-ov.
Sandler, S. I. (2017). Chemical, biochemical, and engineering thermodynamics. Wiley.
Smith, J. M., Van Ness, H. C., Abbott, M. M., & Swihart, M. T. (2021). Introduction to chemical engineering thermodynamics. McGraw Hill.
Vigeant, M. A., Cole, J., Dahm, K. D., Ford, L. P., Landherr, L. J., Silverstein, D. L., & West, C. W. (2019). How we teach: Thermodynamics. ASEE Annual Conference and Exposition, Conference proceedings. https://doi.org/10.18260/1-2--32903.
Woods, D. R. (1994). Problem-based learning : how to gain the most from PBL.
Zargarzadeh, L., & Elliott, J. A. W. (2019). Bubble formation in a finite cone: More pieces to the puzzle. Langmuir, 35 (40). https://doi.org/10.1021/acs.langmuir.9b01602.